

Autonomous navigation in industrial cluttered environments using embedded stereo-vision

Julien Marzat ONERA Palaiseau

Aerial Robotics workshop, Paris, 8-9 March 2017

retour sur innovation

Copernic Lab (ONERA Palaiseau)

Research topics

- Vision-based localization, state estimation and mapping
- Guidance and control (including multiple vehicles)
- Safety, fault diagnosis and reconfiguration
- Embedded algorithms for autonomous navigation

Main application: Autonomous navigation of robots in indoor cluttered environments

On-going projects

- ONERA / SNCF Research Partnership (DROSOFILES)
- FP7 EuRoC (European Robotics Challenges)

http://w3.onera.fr/copernic

THE FRENCH APPOSPACE IA

ONERA / SNCF Research Partnership

□ UAVs for SNCF (French Railways)

- Topics: indoor inspection, outdoor line or structure inspection
- From corrective maintenance to predictive maintenance
- Cost reduction

Multi-disciplinary ONERA expertise

- System Analysis, conception and simulation validation (SimulationLab)
- Reglementation, safety and certification
- Aerial Robotics (autonomous navigation)
- Embedded sensors (IR, camera, radar)
- Ground Station
- Data processing and interpretation

Flight

demonstration

First demonstration (June 2015) Waypoint navigation using vision-based localization and mapping

On-board sensor fusion (IMU/vision) for localization, octomap mapping, PID control

Demonstrations in industrial environment (2016)

New functionalities

- Automatic take-off and landing using laser telemeter
- Yaw control from 3D coordinates
- Trajectory tracking
- Obstacle detection and avoidance

Asctec Pelican platform

Embedded perception and control loop

(1) M. Sanfourche et al., «A realtime embedded stereo odometry for MAV applications », IROS, 2013

(2) A. Geiger et al., « Efficient Large-Scale Stereo Matching », ACCV, 2010

(3) A. Wurm et al., « Octomap: an efficient probabilistic 3D Mapping Framework based on octrees », Autonomous Robots, 2013

(4) S. Bertrand et al. « MPC Strategies for Cooperative Guidance of Autonomous Vehicles », AerospaceLab Journal, 2014

Vision-based localization: eVO

Vision-based localization: eVO

- Computes position and attitude using 3D sensors (stereo rig or RGB-D)
 20 Hz on a usual embedded CPU (Core2duo, i5, i7)
 Many flight hours in the last 4 years
- Operating principles
 - Map of 3D landmarks built on-line + localization in image => position and attitude
 - Key-frame scheme to limit complexity (update on number of visible landmarks)

Vision-based localization: eVO

Other features

- Handles large fields of view using distortion models
- RANSAC management of 3D landmarks

Multi-sensor state estimation

Multi-sensor state estimation (Kalman filter)

- Prediction of position and velocity using IMU measurements [accelerometers at 100 Hz]
- Filtered orientation provided by Asctec IMU [100 Hz]

$$\begin{cases} \widehat{P}(k+1) = \widehat{P}(k) + \widehat{v}(k) \ \delta t \\ \widehat{v}(k+1) = \widehat{v}(k) + (R(\theta(k))a_{IMU} + g) \ \delta t \\ \theta(k+1) = \theta_{IMU} \end{cases}$$

Correction using eVO position measurements [20 Hz]

ONERA

THE FRENCH AEROSPACE LAB

Environment modeling for safe navigation

3D environment modeling for safe navigation

- Discretized 3D voxel model (Octomap)
- Integration of depth maps (vision-based or sensor-based) in association with vehicle estimated position and attitude
- Probabilistic multi-scale representation of free/occupied/unexplored cells
- 1-2 Hz on embedded CPU

(a) A. Wurm et al., « Octomap: an efficient probabilistic 3D Mapping Framework based on octrees », Autonomous Robots, 2013

3D environment modeling for safe navigation

- Computation of an obstacle distance map from the voxel Octomap
 - Incremental Euclidean Distance Transform^(b)
 - Efficient for collision checking: single call per position

(b) B. Lau et al., « Efficient grid-based spatial representations for robot navigation in dynamic environments », Robotics and Autonomous Systems, 2013

Guidance for autonomous navigation

Control of translational dynamics

- □ Waypoint stabilisation, trajectory tracking, obstacle avoidance
- Double integrator discretized model, acceleration control input

Model Predictive Control

Find optimal control input sequence minimizing a multi-criterion cost

$$U_{k}^{*} = \operatorname{Arg} \operatorname{Min}_{U_{k} \in \mathcal{U}^{H_{c}}} J\left(x_{k}, U_{k}, \overline{X}_{k}\right)$$

Sequence of H_c control inputs: $U_k = \{u_k, u_{k+1}, ..., u_{k+H_c-1}\}$

Predicted states on H_p (> H_c) steps $\overline{X}_k = \{\overline{x_{k+1}}, \overline{x_{k+2}}, ..., \overline{x_{k+H_p}}\}$

- Takes into account future behaviour and environment
- □ Handle constraints on control inputs
- Optimization required => computation time should be limited

Guidance for autonomous navigation

Multi-criterion cost function to be minimized

 Search for sub-optimal solution in pre-discretized space
 Limits and bounds computational cost
 Successive avoidance planes tested

Supervision

Supervision – state machine for flight phases

Experimental Results in SNCF warehouse

European Robotics Challenge – www.euroc-project.eu

Autonomous damage inspection in power substation

Vision-based autonomous exploration and mapping

Freestyle (August 2016)

- 1. Autonomous exploration in GPS-denied environment
- 2. Dynamic non-cooperative obstacle avoidance

Showcase (March 2017)

- 3. Many thin, hollow and linear structures
- 4. Variable illumination conditions (reduced light)

FP7 EUROC – Freestyle results

Autonomous Exploration

Mobile Object Tracking and avoidance

Autonomous navigation in presence of mobile objects

Stereo-vision for detection and motion estimation

- 1. Dense residual optical flow
- 2. Sparse feature-clustering

Model Predictive Control for safe trajectory definition

- Multi-objective criterion
- Systematic search approach

- Detection and avoidance of mobile objects
- Everything computed on-board
- Successful experiments

Mobile robot with GPU

MAV with embedded CPU

FP7 Euroc – Avoidance of Mobile object

Current and future work

New demonstrations in ONERA / SNCF partnership

- Wall inspection
- Mobile objects
- Demonstration at IFAC WC (Toulouse) in July 2017

FP7 Euroc Showcase

 Autonomous exploration (volume coverage) in presence of thin / hollow structures

ONERA

THE FRENCH APPOSPACE IA

ONERA project on perception and guidance for multiple vehicles (2017 – 2020)

Related publications

- J. Marzat, S. Bertrand, A. Eudes, M. Sanfourche, J. Moras, Reactive MPC for autonomous MAV navigation in indoor cluttered environments: flight experiments, IFAC WC 2017
- D.K. Phung, B. Hérissé, J. Marzat, S. Bertrand, Model Predictive Control for Autonomous Navigation Using Embedded Graphics Processing Unit, IFAC WC 2017
- H. Roggeman, J. Marzat, A. Bernard-Brunel, G. Le Besnerais, Autonomous exploration with prediction of the quality of vision-based localization, IFAC WC 2017
- H. Roggeman, J. Marzat, A. Bernard-Brunel, G. Le Besnerais, Prediction of the scene quality for stereo vision-based autonomous navigation, IFAC IAV 2016
- N. Piasco, J. Marzat, M. Sanfourche, Collaborative localization and formation flying using distributed stereo-vision, ICRA 2016
- J. Marzat, J. Moras, A. Plyer, A. Eudes, P. Morin, Vision-based localization mapping and control for autonomous MAV - EuRoC challenge results, ODAS 2015
- H. Roggeman, J. Marzat, M. Sanfourche, A. Plyer, Embedded vision-based localization and model predictive control for autonomous exploration, IROS VICOMOR 2014
- S. Bertrand, J. Marzat, H. Piet-Lahanier, A. Kahn, Y. Rochefort, MPC Strategies for Cooperative Guidance of Autonomous Vehicles, AerospaceLab Journal, 2014
- M. Sanfourche, A. Plyer, A. Bernard-Brunel, G. Le Besnerais, 3DSCAN: Online egolocalization and environment mapping for micro aerial vehicles. AerospaceLab Journal, 2014